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Evaluating prediction uncertainty in simulation models
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Abstract

Input values are a source of uncertainty for model predictions. When input uncertainty is
characterized by a probability distribution, prediction uncertainty is characterized by the induced
prediction distribution. Comparison of a model predictor based on a subset of model inputs
to the full model predictor leads to a natural decomposition of the prediction variance and the
correlation ratio as a measure of importance. Because the variance decomposition does not
depend on assumptions about the form of the relation between inputs and output, the analysis
can be called nonparametric. Variance components can be estimated through designed computer
experiments.
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1 Background

In a general sense, uncertainty or variability in the prediction of a simulation model can arise
from three sources. One source, called simulation variability, is an integral part of a stochastic
simulation model and often corresponds to the stochastic variability one sees in the world or
system being modeled. Simulation variability is an important model constituent in, for example,
the probabilistic risk assessment exercises Helton [1][2][3] performed for the U.S. Nuclear
Regulatory Commission. Another source of variability in prediction is called input uncertainty. It
refers to incomplete knowledge of “correct” values of model inputs, including model parameters.
Various methods related to assessing input uncertainty appear in the literature, including Cukier,
Levine and Shuler [4], McKay [5], Cox [6], Iman and Hora [7], Krzykacz [8], Morris [9], Sobol’
[10], and McKay [11]. Input uncertainty exists independently of any model. The final source of
variability is called structural uncertainty, and exists because models are based on assumptions
that are usually selected with some latitude. This source of uncertainty is associated with the
mathematical form or structure of the model. The literature on structural uncertainty, in its
infancy, includes Sacks, Welch, Mitchell, and Wynn [12], Atwood [13], McKay [14], Winkler
[15], Draper [16], and Laskey [17].

This paper focuses its discussion on input-uncertainty analysis. Only one model is under
investigation and its validity or structural uncertainty is not an issue. Simulation variability will
not be addressed explicitly. A simple way to use the methods to be presented for true stochastic
simulation models is to apply them to the simulation mean value of the model prediction. The
added complication is that the precision of the estimator of the simulation mean should be
considered. This consideration is outside the scope of this paper.

2 Mathematical abstraction

The ideas discussed in this section relate to input uncertainty, prediction uncertainty, and
importance of inputs for a specified model. To set the stage, suppose that for a model m(�), the
prediction y is determined by a vector of “input” variables x of length p. Input variables may
define initial conditions or state of a system being modeled, as well as parameter values in the
rules that determine y from the initial conditions. (When necessary, model parameters can be
made explicit in a parameter vector �.) We write the model prediction process as

y = m(x); x � fx(x); y � fy(y) : (1)

The probability distribution fx of the input variables x induces on y the probability distribution
fy, the prediction distribution. V (y), the variance of the prediction distribution, is the prediction
variance. The objective of our analysis will be to identify a subset of inputs xs that “drives”
the prediction variance.

Suppose that the model prediction based on the subset xs of input variables is

ey = E(y j xs) ; (2)
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with the conditional expectation being over the complementary input subset xs. One can think of
xs as being “control” variables and xs as “noise” variables. We can write the model prediction
y to correspond to xs and xs as

y = ey + (y � ey)

= E(y j xs) + e
�
xs j xs

�
:

(3)

The first term represents the average fixed value we expect for y due to the control variables xs.
The second term represents the random residual or error component due to the noise variables xs.

Our objective is to find a (small) subset of the input variables xs for which their predictor ey is
a good approximation to the full model prediction y. One way to measure the quality of ey as
a predictor is by the quadratic loss function

L = (y � ey)2 : (4)

The expected value E(L) is commonly called the mean squared error (MSE) of prediction. We
relate the importance of the set xs to its predictive ability. We measure predictive ability locally
(at a specified value of xs) by the loss function L, and globally (averaged over values of xs)
by the expected value of L. The global, mean squared error of prediction is a function of the
difference in variances given by

E(L) = E(y � ey)2
= E(y � E[y j xs])2

= V (y)� V (E[y j xs])

= V (y)� V (ey)
(5)

because
Cov(y;E[y j xs]) =

Z
yE[y j xs]f

xsjxsfxsdx
sdxs � �2

y

= V (E[y j xs]) ;
(6)

where

�y =

Z
y(x)fx(x)dx : (7)

Therefore, we see from

V (y) = V (ey) + E(L) (8)

that the prediction variance is “driven” by the subset xs through the prediction variance V (ey) of
the “restricted” prediction ey. The two variances approach equality as the prediction ey approaches
y. We use their ratio

�2 = V (ey) = V (y) ; (9)

the correlation ratio of Pearson [18], as a measure of the importance of xs relative to x.
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3 Strategy for analysis

We now address the task of how one might find subsets xs of important input variables that
maximize the correlation ratio. We will construct an approach similar to subset selection in
linear regression, which identifies “best” subsets of size 1, 2, and so forth. Following classical
Analysis of Variance (ANOVA), we consider additive decompositions of the prediction variance
with terms Vi that can be associated with the subsets of the inputs x. Symbolically, we write

V (y) = V1 + V2 + � � � ; (10)

where the terms in the expansion represent contributions from subsets of inputs like, for example,
individual inputs, pairs of inputs, triples, and so forth. When the components of the input vector
x are statistically independent, several ANOVA-like decompositions have been used by, for
example, Cukier, Levine and Shuler [4], Efron and Stein [19], and Sobol’ [10]. Cox [6] relaxes
the independence requirement, but only somewhat. For p independent inputs, there are 2p � 1
possible terms in the ANOVA-like decomposition. When no assumptions, i.e. y is approximately
linear in x, are made about the form of the relationship between model inputs and output, we
call the methods nonparametric variance-based methods.

An approach when the components are not independent follows from Panjer [20], who generalizes
the well known variance formula

V (y) = V [E(y j w)] + E[V (y j w)] (11)

from Parzen [21]. Suppose that the input vector x is partitioned into 3 disjoint subsets, denoted
by w1; w2; and w3. (The number of such partitions may be enormous.) The prediction variance
could be written

V (y) =Vw3
Ew2jw3

Ew1jw2;w3
(y j w2; w3)

+ Ew3
Vw2jw3

Ew1jw2;w3
(y j w2; w3)

+ Ew2;w3
Vw1jw2;w3

(y j w2; w3) :

(12)

In the general case for k subsets (or random variables) fw1; w2; � � � ; wkg as presented by Panjer,
there are k terms in the expansion and k! possible expansions corresponding to the labeling of
the set fw1; w2; � � � ; wkg. When the random variables are independent, all decompositions are
identical. In any event, Panjer’s formula corresponds to ANOVA decompositions for nested
or hierarchal models. Although the terms in Panjer’s formula are nonnegative, they are not
variances, in general, unless the components of x are independent.

Panjer’s formula can be used in analysis of simulation models as follows. We note in Eq. 12 that

Ew2jw3
Ew1jw2;w3

(y j w2; w3) = ey3(w3) (13)

is the restricted predictor using w3, and that

Ew1jw2;w3
(y j w2; w3) = ey2;3(w2; w3) (14)
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is the restricted predictor using both w2 and w3. We interpret Eq. 12, written as

V (y) = Vw3
(ey3) + Ew3

Vw2jw3
(ey2;3) + Ew2;w3

Vw1jw2;w3
(y j w2; w3) ; (15)

to mean that combining the subset w2 with the subset w3 increases the restricted prediction
variance for the combined subset by the amount

�V = Ew3
Vw2jw3

(ey2;3) : (16)

Our strategy will be to build up xs sequentially by examining estimates of �V for candidate
input variables.

4 Sequential estimation of variance components

We now describe a screening procedure in the spirit of step-up regression, following McKay and
Beckman [22]. The procedure uses estimates of elements in Eq. 15 based on Latin hypercube
sampling (LHS) designs [23]. In the iterative procedure, xs is the current set of variables selected
to be important and plays the part of w3. A candidate input variable x� from xs plays the part
of w2. x� is under consideration for inclusion into xs. The variable w1 stands for all the other
input variables, x� =

�
xs
	
� fx�g. In terms of the input variables, Eq. 15 becomes

V (y) = Vxs(eyxs) + ExsVx�jxs(eyx�;xs) + Ex�;xsVx�jx�;xs(y j x
�; xs) : (17)

At each stage in the iteration, 1 or more variables x� are moved from x� into xs. The iteration
stops at the discretion of the analyst, and the selection of xs is validated in a final step.

Estimators

To begin the iteration, we consider each input variable separately. Let x� denote an input
variable and x� the remaining inputs in x. Suppose we have performed a computer experiment
and generated the samplen

yij = m
�
x�i [ x�ij

�
; i = 1; � � � ; I; j = 1; � � � ; J

o
x�i � fx� iid; x�ij � fx�jx�

i
c-iid :

(18)

That is,
�
x�
1
; � � � ; x�I

	
is an independent and identically distributed (iid) sample from fx� , and

for each value x�i in the sample,
�
x�i1; � � � ; x

�
iJ

	
is a conditionally iid (c-iid) sample from fx�jx� .

We calculate the sums of squares

SST0 =
IX

i=1

JX
j=1

(yij � y)2 and SSB0 =
IX

i=1

JX
j=1

(yi� � y)2 : (19)

The quantities

yi� =
1

J

JX
j=1

yij and y =
1

IJ

IX
i=1

JX
j=1

yij (20)
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are sample means of the values of yijk . The correlation ratio for x� is estimated with bias by

b�2x� = SSB0=SST0 : (21)

Typically, we select the input with the largest estimated correlation ratio to become the first
element in xs.

For subsequent stages or iterations, suppose we generate a sample of values yijk according to
the design

n
yijk = m

�
xsk [ x�ik [ x�ijk

�
; i = 1; � � � ; I; j = 1; � � � ; J ; k = 1; � � � ;K

o
x�ik � fx�jxs

k

c-iid; x�
ijk

� fx�jxs
k
;x�

ik

c-iid; xsk � fxs iid :
(22)

We calculate the sums of squares

SST =
IX

i=1

JX
j=1

KX
k=1

�
yijk � y

�2
and SSB =

IX
i=1

JX
j=1

KX
k=1

(yi�k � y��k)
2 : (23)

As before, yi�k, y��k and y are the indicated sample means of the values of yijk. The estimate of
the �V associated with x� is proportional to SSB. The partial correlation ratio for x�, “adjusted
for” the subset xs, is estimated with bias by

b�2x�jxs = SSB=SST : (24)

The incremental correlation ratio for x�, conditional on the subset xs, is estimated with bias by
using SST0 instead of SST in the denominator,

�b�2x�jxs = SSB=SST0 : (25)

It is the estimated amount by which the correlation ratio for the set xs would increase with the
addition of x�. Both of these quantities are proportional to SSB and our estimate of �V . For
sequential variable selection, we prefer to look at the partial correlation ratio together with the
change in prediction variance because of the nature of the sample designs we use.

Sample designs

Independent samples for p input variables would require N0 = p� I � J model runs following
Eq. 18 to begin the iterations. Subsequent stages would require N = p � I � J � K runs
following Eq. 22. If LHS samples are used instead of simple random samples, both N0 and N

would be reduced by the factor p because the same y-values, albeit in a different order, would
be used in the calculations for each input variable. Therefore, we generate first an LHS of size
I for the p input variables. Then, we construct J pseudo replicates of that design matrix by
independently applying new random permutations to each of its p columns. In this way, we
generate a set of N = I � J input vectors x, containing I distinct values of each component
of x, replicated J times in different pairings.
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We further reduce N in the iterations by taking I = 1 and setting xs in Eq. 22 to its nominal
(median) value. This action is equivalent to approximating �V by

d�V = Vx�jxs

�ey
x�jxs=nominal

�
' ExsVx�jxs

�eyx�jxs� = �V : (26)

The approximation to �V is equivalent to considering the additional importance of x� not on
average (globally) but only at the nominal value of xs (locally). We then use the sample from
the 0th iteration with Eq. 18 replacing the values of xs with their nominal values. This is the
design we use in place of Eq. 22 to obtain a new sample of y-values.

Properties of the estimator in Eq. 21 under LHS are not yet known. However, the authors
have found the procedures to work very well in practice. Likewise, they have found that using
I = 1 and setting xs to its nominal value in the iteration steps has been adequate to identify
important input subsets.

Validation

The final, validation step consists of estimating the correlation ratio for final xs, the vector of
the selected inputs. One can use the design of Eq. 18 (with xs playing the role of x� and xs

playing the role of x�). Alternatively, one might use a fixed design, as will be done in the
demonstration in the next section. We examine model responses at each of the xs-design points
to observe the variability caused by the “unimportant” inputs xs.

5 Demonstration application

The model in this demonstration is a discrete event simulation of the time-dependent movements
of various cargos by various types of military aircraft. We study eight of the model’s input
variables (a small number): MOG, Max Wait, Use Rate, Enroute Time, Offload Time, Onload
Time, Initial Hours and Fuel Flow. The model output predictions are cumulative hours (h) flown
and tons (t) of cargo delivered for each aircraft type. Aircraft types are designated by C-141,
C-17 and C-5A. The computer experiment is based on the form of replicated LHS described
in the last section, with I = 12 distinct values of each input variable replicated J = 4 times
for a total of 48 model runs at each stage. The “base case” or 0th iteration predictions for 6
outputs are presented in the bands in Figure 1. They show the prediction variability when all
inputs are sampled from their joint uniform probability distribution fx, which was taken to be
joint uniform. The plots present a more complete description of the prediction distributions fy
that do prediction variances alone.

The model outputs y are not scalars but time series computed at 15 days. Therefore, we will
apply the analysis calculations independently for each day. The prediction variances are estimated
from the data in the Figure 1. The figure displays the object of the analysis, the spread in the
plots, which is to be quantified by way of correlation ratios and attributed to various inputs. The
correlation ratios for each of the 8 input variables are calculated from Eq. 21 for each day. The
calculations are performed 8 times, with x� corresponding to x1; x2; � � � ; x8. Time trends in the
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Figure 1. Base case, all 8 inputs vary

TABLE I
Correlation ratios from base case

Output
(�)

MOG
Max
Wait

Use
Rate

Enroute
Time

Offload
Time

Onload
Time

Initial
Hours

Fuel
Flow

Avg b�2 0.28 0.23 0.45 0.14 0.27 0.28 0.17 0.40
C-5A.t
(1227) % days

b�2 � CV
- - 93 - 7 - - 47

Avg b�2 0.24 0.21 0.49 0.11 0.29 0.31 0.17 0.42
C-5A.h
(1782) % days

b�2 � CV
- - 100 - - - - 53

CV is a critical value from normal theory under a null hypothesis of independence of x and y. It is used
here only as a filter.

estimated correlation ratios can be very informative, pointing to regimes where different inputs
are important. For this demonstration, however, we only present estimates averaged over days
for each input. We point out that the estimates for each day and across outputs are not statistically
independent. Sample results of the calculations for aircraft type C-5A2 appear in Table I.

2 Really for C-141
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Average prediction variance is monitored by the average daily prediction variance in square root
form. The average daily variability (�) in tons delivered by C-5A aircraft is 1227 from the first
column of the table. It was computed as

� =

vuut 1

15

15X
d=1

1

47

48X
i=1

(yid � yd)
2 (27)

where the subscript d indicates day. From the first row of numbers in the table we see that
Use Rate, on average, accounts for 45% of the variability in y. Therefore, Use Rate is selected
as the “xs” at Stage 1. Because we choose to select variables one-at-a-time in this screening
procedure, Stage 1 is complete. However, we see from Table I the indication that Fuel Flow is
also important. Reduction in the bands of predicted values from setting Use Rate to its nominal
value are seen in Figure 2. These runs constitute the data for Stage 2.
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Figure 2. Use Rate set to nominal value and other 7 inputs vary

Validation

We continued selecting variables, one at a time, through three more screening stages but, finally,
decided that only two (Use Rate and Fuel Flow) of the eight variables were the principal
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contributors to prediction variance. We used a 2
2 factorial design on the extreme values of

Use Rate and Fuel Flow, together with a small LHS on the other six inputs, to investigate
contributions to prediction variance. Sample results for tons delivered by C-5A aircraft are
displayed in Figure 3. The large differences among the four bands of predictions are due to the
4 combinations of values of Use Rate and Fuel Flow. The variations within each band are due
to the other six inputs. These results indicate how well Use Rate and Fuel Flow account for the
variability in the model predictions for C-5A tons depicted in Figure 1.
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Figure 3. Bands of curves correspond to different combinations of 2 values of
Use Rate (high in top 2 bands) and Fuel Flow (high within top 2 and bottom 2).

Widths of bands correspond to variability attributable to the other 6 inputs

6 Conclusions

This paper presents techniques and suggests directions for research and development of methods
for assessing effects of input uncertainty on model prediction. Variance-based measures of
importance for input variables arise naturally when using the quadratic loss function of the
difference between the full model prediction y and the restricted prediction ey. Practical limitations
of the methods come from size of samples required to obtain adequate estimates of the variance
components.
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